

caGrid Technical Overview

1

caGrid Technical Overview for Software Developers Using caGrid

The caGrid Knowledge Center

Document Revision History

Revision Date Author(s) Change Reference Reason for Change

1.0 08/10/2008 Justin Permar and Tahsin

Kurc

 Initial Document

1.0.1 08/11/2008 Tahsin Kurc Modified formatting and added

references.

caGrid Technical Overview

2

Contents

1. Introduction ... 3

2. caGrid Framework ... 5

2.1. Interoperable and Model Driven .. 6

2.2. Semantically Discoverable .. 8

2.3. Secure and Manageable ... 9

3. caGrid Architecture Components ... 12

3.1. Introduce Toolkit .. 12

3.2. caGrid Query Language .. 15

3.3. Types of Grid Services .. 15

3.3.1. Data Services .. 15

3.3.2. Analytical Services .. 16

3.4. Security .. 17

3.4.1. Grid Account Management and Federation .. 17

3.4.2. Authorization: Grid Service Access Control ... 19

3.4.3. Grid Trust Management ... 20

3.4.4. Credential Delegation Service (CDS) ... 20

3.5. Large Data Transfer .. 21

3.6. Web Integration ... 21

3.6.1. webSSO .. 21

3.6.2. caGrid Portal .. 22

3.7. caGrid Coordination Services .. 22

3.7.1. Index Service and Metadata ... 22

3.7.2. Federated Query and Workflow ... 23

3.7.3. Global Model Exchange (GME) Service ... 24

3.7.4. caGrid Services for caDSR and EVS .. 24

caGrid Technical Overview

3

1. Introduction

This document presents a technical overview of the caGrid middleware, its core components, and how

the caGrid components can be used to build applications. The caGrid infrastructure[1-3] is designed to

facilitate interoperability and federation of information and analytical resources, potentially developed

by independent groups, in a multi-institutional environment. caGrid provides tools and APIs for software

developers to build secure, interoperable services and applications. Sharing data and analytical routines

with collaborators provides researchers with the capability to benefit from the combined expertise,

knowledge, and resources of multiple organizations.

caGrid combines Service Oriented Architecture (SOA), Grid computing, and the Model Driven

Architecture (MDA) (http://www.omg.org/mda/) in an integrated framework. Service Oriented

Architecture is a distributed computing architecture where functionality of a component is encapsulated

as a service and deployed on the network multiple services can be used together to produce additional

and more complex functionality than that of a single service. Most SOA systems employ Web Services

technologies as the underlying platform. Web Services provides access to services via standard web

protocols. Client applications access services via standardized service APIs.

Grid computing refers to the concept of utilizing distributed resources[4-9]. Grid computing started as a

mechanism to enable access to high-end computing facilities across multiple supercomputer centers to

solve complex scientific and engineering problems that require massive computing and storage

resources. Grid computing has since evolved into a platform that facilitates the development,

deployment, and secure federation of data and analytical resources. Following the SOA standardization

effort, the Grid computing community developed the Open Grid Services Architecture (OGSA) standards,

which adapt and extend Web Services standards for scientific applications. The OGSA standards define

mechanisms and guidelines for such additional features as stateful services, service notification, and

management of service lifetime, within the context of established Web Services standards. The OGSA

has evolved into the Web Services Resource Framework (WSRF)[10, 11]. The WSRF is based on the core

concepts underlying the OGSA; however, it extends these concepts and adds new functionality to

establish a path towards unifying Web services and Grid services technologies. We refer the reader to

the following references for additional background information on Grid computing and SOA.

 Service Oriented Architecture: http://en.wikipedia.org/wiki/Service-oriented_architecture

 Grid Computing: http://www.globus.org/alliance/publications/papers/anatomy.pdf

 Web Services Resource Framework (WSRF): http://www.globus.org/wsrf

caGrid builds on the WSRF standards. Software developers using caGrid build “Grid services”, i.e., each

analytical and data resource is wrapped as a Grid service and can be invoked via WSRF protocols. A

distinguishing feature of caGrid over the basic SOA and Grid computing approaches is the improved

support for syntactic and semantic interoperability among Grid services. Syntactic interoperability

enables a consumer (e.g., a client program) to programmatically access a resource (e.g., a service). The

http://www.omg.org/mda/
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.globus.org/alliance/publications/papers/anatomy.pdf
http://www.globus.org/wsrf

caGrid Technical Overview

4

major obstacles to syntactic interoperability are the heterogeneity of the programming and messaging

interface syntax and data structures that encapsulate the same type of data across different systems.

That is, a software system cannot access the components of another system unless 1) there are

programmatic interfaces to those components, 2) these interfaces and how they can be invoked are

well-defined, and 3) the two systems have agreed on the structure of data types exchanged between

the components of the two systems. Semantic interoperability, on the other hand, is concerned with use

of a resource – i.e., semantically correct interpretation and consumption of a resource. In a distributed

environment, in which resources are developed by independent groups, the meaning of a resource and

the attributes of data structures representing the content of the resource can be named and described

differently by different groups. Two data elements representing the same entity might have been

defined using different terms; more importantly, two data elements representing different concepts

may have the same attributes and attribute names. The contents and meaning of a resource need to be

explicitly defined using terms from a vocabulary, which is agreed upon by the community (resource

providers and resource consumers) in order to address obstacles to semantic interoperability.

caGrid adopts a Model Driven Architecture approach to enable interoperability through object-oriented

abstractions, common data elements, and controlled vocabularies. That is, client and service APIs in

caGrid are object-oriented and operate on well-defined objects. These objects, in turn, are built from

common data elements and controlled vocabularies registered on the Grid. A caGrid-compliant data

service abstracts a data source’s data elements as objects. Similarly, an analytical resource (e.g., an

analysis program) implemented as a caGrid analytical service provides methods that input objects and

return objects.

In addition to resource-specific data and analytical services, caGrid provides Grid-wide coordination

services that are used by both Grid client and other Grid services. Coordination services include

metadata management services, advertisement and discovery services, federated query services,

workflow execution services, and security services. For instance, the advertisement and discovery

services can be used to both advertise and discover the availability, service operations, and state of

services deployed to the Grid. Coordination services can be replicated and distributed in the

environment to achieve higher availability and performance. Figure 1 shows the caGrid infrastructure

with coordination services (e.g., metadata services, security services, workflow service) as well as

community-provided services. Users can access these services through web portals or client

applications.

caGrid Technical Overview

5

Figure 1. caGrid infrastructure and environment.

2. caGrid Framework

The design of caGrid is mainly driven by the requirements and use cases from the biomedical research

community. While numerous complex use cases are possible, common requirements across different

use cases include the need to: 1) carry out searches that return precisely defined attributes and data

values from heterogeneous information sources, 2) access, aggregate, and perform integrated analysis

of multiple types of data, and 3) enforce access control policies surrounding shared Grid resources. In

order to support theserequirements, caGrid facilitates programmatic discovery of the structure and

semantics of Grid resources. Semantic discovery is a powerful mechanism for researchers to find Grid

resources relevant to their work.

caGrid leverages Grid Services technologies, including the Globus Toolkit (http://www.globus.org) and

Mobius (http://projectmobius.osu.edu/)[12], and tools developed by the NCI, such as the caCORE

infrastructure (http://ncicb.nci.nih.gov/infrastructure/cacoresdk)[13, 14], to deliver functionality. While

the caGrid 1.x infrastructure is built upon Globus Toolkit 4.0 (GT4)[5], it aims to be programming

language and toolkit agnostic. Specifically, caGrid services are standard WSRF v1.2 services and can be

accessed by any specification-compliant client. The architecture of caGrid has several important features

to better address the informatics needs of biomedical research. In the rest of this section we present an

overview of these features.

http://www.globus.org/
http://projectmobius.osu.edu/
http://ncicb.nci.nih.gov/infrastructure/cacoresdk

caGrid Technical Overview

6

2.1. Interoperable and Model Driven

Projects which involve information integration and analysis using heterogeneous data and analytical

resources developed by different groups have to tackle several challenging informatics problems. The

first problem is that of programmatically accessing resources that may be hosted at other institutions.

Multiple institutions have different security infrastructures; data to be accessed may be stored in

various database management systems, requiring multiple query and retrieval mechanisms; analytical

programs may have to be invoked in different ways. The second problem is resources may have

different data representations. Each resource may even define the same conceptual data type using a

different data structure and database schema than other resources. A software developer would need

to find out how a data type is represented in each resource and would have to implement software to

consume differing data structures – in such an approach, addition of a new source might require

changes to the client application and other resources that consume or produce the data type. The third

problem is that each resource provider may use a different terminology and ontology to annotate their

data and data types. It is possible that data types encoding the same entity may have been annotated

with terms from different ontologies. Multiple information providers may have different definitions of a

concept and/or choose different vocabulary to define the same concept. These differences make it

difficult to interpret information received from a resource and carry out computational reasoning and

semantic integration on the data.

Web services standards solve the programming language interoperability problem (C# and Java, for

example) by specifying language-independent access to distributed resources. WSRF solves additional

interoperability issues by defining standardized web service interfaces. In addition to these standards,

controlled vocabularies, common data elements (CDEs), published information models, and well-defined

application programming interfaces (APIs) are necessary to enable syntactic and semantic

interoperability among resources. As presented in the introduction section, Syntactic interoperability

facilitates programmatic access to otherwise heterogeneous resources. Semantic interoperability is

needed to ensure correct interpretation of a resource and its content. The caBIG™ program and caGrid

adopt a model driven architecture approach to enable syntactic and semantic interoperability between

resources. The caBIG™ community has developed guidelines and a set of requirements to represent an

application’s level of interoperability. These guidelines are outlined in the caBIG compatibility guidelines

document (https://cabig.nci.nih.gov/guidelines_documentation/).These guidelines indicate that a

resource should have well defined APIs that provide object-oriented access to backend systems, employ

community curated/harmonized terminologies and common data elements for its data models, and

expose published domain models. Such resources are considered syntactically and semantically

interoperable. When these resources are deployed in a multi-institutional environment, they should be

wrapped as Grid services with WSRF compliant service interfaces, use XML for data exchange, and be

supported by a common framework for functions such as service advertisement, discovery, security, and

invocation. As is described in the introduction section, caGrid services represent an object-oriented view

of backend resources. The structure of data served by a data source or consumed/produced by an

caGrid Technical Overview

7

analytical resource is represented with a domain model, which is expressed as object classes and

associations between them. Client and service APIs in caGrid operate on instances of objects, whose

classes and class attributes are registered and published on the Grid.

caGrid leverages existing NCI data modeling infrastructure to manage, curate, and employ domain

models. Specifically, a Grid developer creates UML class diagrams to model data that will be shared on

the Grid. Using UML tools and NCI data modeling infrastructure, the domain models are converted into

common data elements in the form of ISO/IEC 11179 administered components and registered in the

Cancer Data Standards Repository (caDSR)[13, 14]. These data elements are annotated by terms and

concepts drawn from vocabulary registered in the Enterprise Vocabulary Services (EVS)[13, 14]. The

concepts of data elements and the relationships among the data elements thus are semantically

described. More information about the modeling process can be found at the caBIG™ Boot Camp

website (https://cabig.nci.nih.gov/training/2007_boot_camp). In the Grid environment, clients and

services communicate using messages encoded in XML. When an object is transferred between clients

and services, it is serialized into a XML document that adheres to a registered XML schema. The

requirement for use of registered data models and XML schemas is to ensure syntactic and semantic

interoperability between two end-points exchanging information. With a published model and schema,

the receiving end-point can parse the data structure and interpret the information correctly. XML

schemas corresponding to common data elements and object classes are registered in the GME service.

In summary, the caDSR and EVS define the properties and semantics of caBIG™ data types, and the GME

defines the syntax of their XML materialization.

It should be noted that caGrid provides a flexible development and runtime infrastructure so that a

service provider and developer can achieve interoperability in steps. While a service deployed for

production use in the caBIG™ environment must be syntactically and semantically interoperable –

exposing well-defined, registered domain models and objects annotated with terms from controlled

vocabularies –, a developer does not have to satisfy all of the requirements at once to be able to

develop and test a service. The developer can stand up a local instance of caGrid and develop and

deploy services in this instance without having to register data elements in the caDSR, or use the EVS, or

register schemas in the GME. A collaborative group can set up a caGrid instance for their project and

implement strongly-typed services that will be only syntactically interoperable. That is, these services

use objects, the corresponding XML schemas of which are registered in the GME, but do not register the

definitions of these objects in the caDSR and the EVS. This modularized, flexible infrastructure of caGrid

offers an efficient development environment and an efficient mechanism for adoption of the caGrid

technologies. It allows communities and groups outside the caBIG™ program, which may not have well

established vocabularies and/or resources to support curation and harmonization processes for

semantic interoperability, to use caGrid in their projects.

https://cabig.nci.nih.gov/training/2007_boot_camp

caGrid Technical Overview

8

2.2. Semantically Discoverable

Grid services register service metadata with a central indexing registry service (Index Service). This

service is both a “yellow pages” and “white pages” for the Grid. A researcher can then discover services

of interest by looking them up in this registry. The common service metadata, to which every service is

required to adhere, contains information about the service-providing cancer center, such as the point of

contact for the service and the institution’s name which is providing the service. Data Services provide

an additional “domain model” metadata, which details the domain model, including associations and

inheritance information, from which the objects being exposed by the service are drawn. These

metadata standards leverage the data models registered in caDSR and link them to the underlying

semantic concepts registered in EVS. The definitions of the objects in a domain model themselves are

described in terms of their underlying concepts, attributes, attribute value domains, and associations to

other objects being exposed. The common service metadata also details the objects, used as input and

output of the services operations, using the same format as the data service metadata. In this way, all

services fully define the domain objects they expose by referencing the data model registered in caDSR,

and identify their underlying semantic concepts by referencing the information in EVS. Metadata

associated with a caGrid data service can specify, for example, what types of image data are served by

the source and whether longitudinal follow-up imagery is available for patients. Metadata for a caGrid

analytical service may include information about what analytical methods are exposed by the service,

what data types each method takes as input, and what data types each returns as output. caGrid

provides a series of high-level APIs and user applications for performing lookup on service metadata

which greatly facilitate the discovery process. The advertisement and discovery process is illustrated in

Figure 2.

http://www.cagrid.org/wiki/CaGrid:Software:Release:1.0
http://www.cagrid.org/wiki/CaGrid:Discovery

caGrid Technical Overview

9

Figure 2. caGrid Discovery Overview

2.3. Secure and Manageable

Security is critical component of caGrid. On the Grid, security requirements exist both for protecting

intellectual property and ensuring protection and privacy of patient data and other sensitive

information. caGrid components that together provide comprehensive security support are known as

the Grid Authentication and Authorization with Reliably Distributed Services (GAARDS)

infrastructure[15-18]. GAARDS provides services and tools for the administration and enforcement of

security policy in an enterprise Grid. GAARDS was developed on top of the Globus Toolkit and extends

Globus Grid Security Infrastructure (GSI) (http://www.globus.org/security/overview.html) to provide

enterprise services and administrative tools for:

1. Grid user management

2. Identity federation

3. Trust management

4. Group/Virtual Organization management

5. Access control policy management and enforcement

6. Integration between existing security domains and the grid security domain

http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.globus.org/toolkit
http://www.globus.org/toolkit/docs/4.0/security/
http://www.globus.org/security/overview.html
http://www.cagrid.org/wiki/Image:CaGrid-1.0_Discovery.png

caGrid Technical Overview

10

Figure 3. GAARDS Security Infrastructure

The main components of GAARDS are: Dorian service for the provisioning and management of Grid

users accounts. Grid Trust Service (GTS) for maintaining and provisioning a federated trust fabric

consisting of trusted certificate authorities, allowing Grid services to make authentication decisions

against the most recent information. Grid Grouper for a group-based authorization solution for the

Grid. Authentication Service for issuing SAML assertions for existing credential providers so they may

easily integrate with Dorian and other Grid credential providers. Credential Delegation Service for a

client (the delegator) to be able to express a delegation policy, entitling a prescribed collection of other

grid entities (the delegates) to assume the delegator’s identity for a limited time.

In order for users and applications to communicate with secure services, they need Grid credentials.

Obtaining Grid credentials requires having a Grid User Account. GAARDS provides an account

management and identity provider service, Dorian, and two mechanisms for registering for a Grid user

account: 1) registering directly with Dorian or 2) having an existing user account in another trusted

security domain (e.g., a participating institution’s security domain). In order to use an existing user

account to obtain Grid credentials, the existing credential provider must be registered with GAARDS as a

http://www.cagrid.org/wiki/Dorian:Main
http://www.cagrid.org/wiki/Image:GAARDS.png

caGrid Technical Overview

11

Trusted Identity Provider. Figure 3 illustrates an example process for obtaining Grid credentials. In this

example, the user first authenticates with his/her institution’s credential provider and obtains a SAML

assertion as proof he is authenticated. The user then uses the SAML assertion provided to obtain Grid

credentials from GAARDS. Assuming the institution’s credential provider is registered with GAARDS as a

trusted identity provider and that the user’s account is in good standing, GAARDS Dorian service will

issue Grid credentials to the user. (Note: if a user has an account with Dorian, he can contact Dorian

directly to obtain Grid credentials). After a user has obtained Grid credentials, he may invoke secure

Grid operations.

Upon receiving Grid credentials from a user, a secure service authenticates the user to ensure the

credentials are valid. Part of Grid authentication is verifying that Grid credentials are issued by a trusted

Grid credential provider (e.g., Dorian). The Grid Trust Service (GTS) of GAARDS maintains the official list

of trusted credential providers. This list is known as the “trust fabric”. Credential providers are

registered as trusted Certificate Authorities (CAs). Trusted CAs periodically publish updated information

to the GTS. Grid services authenticate Grid credentials against the trusted CAs (shown in Figure 3).

Once the user has successfully authenticated, a secure Grid service can perform an authorization check

to determine if a user is authorized to invoke requested service operations. It is important to note that

all authorization decisions are made by the service itself, but GAARDS implements services and tools to

support common authorization mechanisms. The GAARDS infrastructure provides two authorization

options, which can each be used independently or together to implement authorization policies for a

service1. The first authorization option is the Grid Grouper service. Grid Grouper provides a group-based

authorization solution for the Grid, whereby Grid services and applications enforce authorization policy

based on a group membership check. The caCORE Common Security Module (CSM) supports centralized

authorization checks. These checks are “centralized” because CSM is deployed specifically for a service

that performs the authorization check. CSM policies are constructed by specifying read/write access to

protected elements; Grid services using CSM defer authorization checks to CSM. Based on the access

control policy maintained in CSM, CSM decides whether or not a user is authorized. In addition, Grid

Grouper and CSM can be used together; for example, access control policies specified in CSM can be

based on membership to groups in Grid Grouper.

In order to support Grid workflows (a workflow is a group of coordinated services that together provide

a desired analysis or other end result), users need the ability to allow another user or service to perform

work on their behalf. The Credential Delegation Service (CDS) allows a user (the delegator) to express a

delegation policy, entitling a prescribed collection of other grid entities (the delegates) to assume the

delegator’s identity for a limited time. With GAARDS, a user can log in to Dorian and then invoke Grid

workflows by delegating his credential to the CDS; services involved in the Grid workflow retrieve the

user’s credential to perform work for the user.

1 Other authorization mechanisms also can be employed in conjunction with GAARDS.

http://www.oasis-open.org/committees/security/
http://www.oasis-open.org/committees/security/
http://www.cagrid.org/wiki/Dorian:Main
http://www.cagrid.org/wiki/Dorian:Main
http://www.cagrid.org/wiki/GTS:Main
http://www.cagrid.org/wiki/GTS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GAARDS:Main
http://www.cagrid.org/wiki/GridGrouper:Main
http://ncicb.nci.nih.gov/infrastructure/cacore_overview/csm
http://ncicb.nci.nih.gov/infrastructure/cacore_overview/csm
http://ncicb.nci.nih.gov/infrastructure/cacore_overview/csm
http://ncicb.nci.nih.gov/infrastructure/cacore_overview/csm
http://www.cagrid.org/wiki/GridGrouper:Main
http://www.cagrid.org/wiki/CDS:Credential_Delegation_Service

caGrid Technical Overview

12

3. caGrid Architecture Components

The remainder of this document describes various components of caGrid, including tools, APIs, and

services provided in the caGrid software release.

3.1. Introduce Toolkit

The caGrid infrastructure employs the Globus Toolkit (GT) as the underlying Grid middleware backbone

and runtime environment. The GT provides a suite of core runtime services and tools for developing and

deploying Grid services. However, these are low level tools, requiring service developers to understand

the details of the GT and how and in what order the tools should be invoked, and to keep track of

several files and directories that are required for successful compilation and deployment of services.

The Introduce toolkit[19] helps a service developer by coordinating the various steps of the service

development and deployment via the tools provided by the GT and by managing the necessary

directories and files. It abstracts away the details of invoking the various tools so that the developer is

freed up to concentrate on the details of implementing his/her domain-specific code. The main features

of Introduce can be summarized as follows:

 It provides a graphical development environment (GDE) and high-level functions that

encapsulate and hide the common complexities and low level command-line tools of the GT for

generating a suitable service layout. These include client and server wrappers to encapsulate the

“boxed” document literal Grid service calls, functions to create configurable service properties,

functions to specify resource properties and register metadata, functions to specify the security

configurations of the service operations of the service, and support to deploy a service to

commonly used Grid service containers. The Introduce GDE can be used to create, modify, and

deploy a grid service. It is designed to be very simple to use, enable using community accepted

data types, and provide easy configuration of service metadata, operations, resources, and

security. The Introduce GDE contains several screens and options for a service developer to 1)

create a new service, 2) modify an existing service, 3) discover and use published data types in

order to create strongly-typed service methods, and 4) deploy the service.

 It enables development of strongly-typed services. As we discussed in Section 2.1, one of the key

characteristics of caGrid is the support for interoperable services. The Introduce Toolkit

implements this support by enabling creation of services that consume and produce data

objects (or data elements), whose XML serialization conforms to XML schemas – the XML

schemas may be registered in the GME service of caGrid. These services are referred to as

strongly-typed services, since each input and output parameter of the service methods are

objects with well-defined structures. Using the Introduce GDE, a developer can 1) import

caGrid Technical Overview

13

object/data types for use in a service -- the service developer can use the GME Grid service to

import object/data definitions (XML schemas) into the tool or read object type definitions (as

XML schemas) from a file system. Introduce provides plug-ins for developers to incorporate

other object/data type providers.

 It is customizable and extensible via the use of extension plug-ins. Plug-ins allow for Introduce to

be customized and its base functionality to be extended 1) for custom and common service

types in an application domain and 2) to employ customized discovery mechanisms for common

object/data types for creating strongly-typed services.

 It allows for implementation of secure services. It leverages the caGrid security infrastructure,

GAARDS, in order to provide customizable service- and method-level security configuration and

code generation. It provides support for service developers to optionally turn on authentication

and authorization support for individual service methods as well as the entire service itself.

When configured, the service can interact with Grid-wide and local authentication and

authorization services to enforce controlled access to its methods.

 It manages all the service-specific files and directories required by the GT for correct compilation

and deployment. It also generates appropriate, object-oriented client APIs which can be used by

client applications to interact with the service.

 For a Grid service developer, Introduce is the primary tool used to create new Grid services and modify

existing Grid services. There are four primary functions performed in Introduce: 1) Optionally choose

service extensions to customize the type of Grid service, such as the Data Service extension to create a

data service, or the caGrid Transfer extension to support large data transfer; 2) import data types

(object definitions) for use in the Grid service; 3) define Grid service operations, specifying inputs,

outputs, and operation faults; define service properties (configurable properties that the service uses to

customize run-time behavior); 4) if the service is a data service, choose the CQL query processor and

customize query processor properties; and 5) set service security options, including authentication and

authorization policies.

Choosing Service Extensions. Introduce extensions are additional pre-defined service extensions that

add additional capability to a Grid service. An example is the Data Service extension. By adding a data

service extension to a Grid service, the Grid service becomes a “Data Service”. The extension adds the

following: 1) object types related to the caGrid query language, called CQL, including the CQLQuery

object and the CQLQueryResultCollection object; 2) a standard service operation, “query”, that takes a

CQLQuery object as input and returns a CQLQueryResultCollection object; 3) a query processor that

transforms a CQL query into the query language supported by the backing data store (e.g., HQL,

Hibernate Query Language). The service developer can customize the query processor properties.

Example properties include configuration of the backing data store where data resides. There are

additional optional features the Data Service extension supports that a service developer can customize,

such as enabling data service auditing or enabling CQL validation (validating CQL against the data

service’s domain model).

caGrid Technical Overview

14

Importing Data Types. Object/data types are imported into the service so that the service developer can

re-use existing object/data types. For example, consider the use case of developing an analytical service

processing Grid Gene objects. The service developer could import the Gene object class (already defined

and registered in the caDSR, EVS, and GME) for use in the analytical service.

Defining Grid Service Operations. The service developer adds operations to the service. Service

operations are analogous to object methods in object oriented programming. Input and output types

are chosen from previously imported data types. In addition, the service developer specifies faults that

can be thrown by the service.

An advanced activity is to create a stateful Grid service. To create a stateful Grid service, the service

developers creates one or more service contexts. These contexts are created by the Grid service when a

client invoked a service operation that returns a service context. These contexts have their own

operations, and an associated resource that holds state specifically for the client that invoked the Grid

service. An example application of a stateful Grid service is a job invocation pattern. In this pattern, the

user calls a service operation to create a new job. The service creates a context for the user, and an

associated resource, and sets the job parameters on the resource. Then the service returns the context

handle to the client. From this point onward, the client invokes operations on the service context to

start the job, check status, etc.

Setting Authentication and Authorization Options. If the service is “secure”, meaning accessible only to

users who have successfully authenticated on the Grid, the Grid service developer sets the appropriate

service authentication requirements. For example, the developer can enable “Transport Layer Security”,

indicating a private communication method. This configuration option requires users to connect to the

service using only the “https” protocol. In addition, the service developer can configure authorization

policies. For example, the service developer can customize the Grid Grouper authorization policy for

invoking a particular service method: restrict access to service operation X to members of Group Y.

When a user saves the Grid service, Introduce generates a service skeleton. A software developer

implements the methods generated by Introduce to enable service functionality. Currently, the language

binding supported by Introduce is Java. Introduce generates a complete Java project familiar to Java

developers: 1) Eclipse project files; 2) Ant build and deployment targets; 3) service skeleton (source code

for which a programmer provides the implementation of service operations); and 4) client classes and

APIs for accessing the service.

Related caGrid Services and APIs. Because Introduce is a high-level toolkit for creating Grid services, it

leverages many other services and APIs comprising caGrid. Some of the major APIs and services used in

Introduce include: Data Service extension, caGrid Transfer extension, GME (used to import Grid object

definitions), Grid Grouper, caDSR (used to import domain models for data services), and the Index

Service (for service registration and metadata advertisement).

caGrid Technical Overview

15

3.2. caGrid Query Language

caGrid Query Language (CQL) is a custom object-oriented query language. CQL provides a common

query language for all data services deployed to the Grid. That is, all Grid queries are expressed in CQL

and each caGrid-compliant data service is required to be able to consume CQL queries. CQL is designed

to be simple so that service developers can easily implement specialized query processors for different

types of backend databases. Use of a common query language across all data services in the

environment facilitates federated query of multiple services. caGrid provides a federated query

processing service. Federated Query Processor (FQP) takes DCQL (an extended form of CQL) as input to

perform federated query. DCQL queries are broken into composite CQL queries and passed to individual

data services.

The essence of CQL is the following. First, a user creating a CQL query decides which class in the model

they want to retrieve. Then the user specifies restrictions indicating which instances of that class

(representing actual data stored in the backing datastore) the user wants to receive. For example, the

user can target a “Person” class and specify a restriction requiring the requiring the “age” attribute to

equal “5”. CQL supports association traversal, so the user can compose a query that will restrict results

based upon attributes in associated objects. An example is requiring the “Institution” class associated

with the Person have a name of “The Ohio State University”. CQL was created to query the object model

itself. The implementation takes care of performing a query on the back-end data store, which is hidden

from the Grid. For additional examples and further details of CQL, please see the developer wiki at

http://www.cagrid.org.

caGrid provides higher level APIs (with Java binding) to create and submit queries. On the wire, a CQL

query is expressed in an XML document conforming to a well defined schema with the URI

http://CQL.caBIG/1/gov.nih.nci.cagrid.CQLQuery.

3.3. Types of Grid Services

There are two main types of caGrid services provided by service providers: Data Services for sharing data

in the Grid environment, and Analytical Services that provide access to analysis routines over the Grid.

3.3.1. Data Services

Data Services share data on the Grid. The data might reside in a data repository such as a relational

database (RDBMS), XML database, or file system. There are some common features of all caGrid data

services: 1) Each data service exposes its data using a well-defined object-oriented domain model. From

http://www.cagrid.org/

caGrid Technical Overview

16

a client’s point of view, data from the data service is accessed as objects. 2) Each data service has the

standard “Query” service interface that takes a CQL query object as input and returns a result collection

(of type CQLQueryResultCollection), containing objects that satisfy the query and whose classes are

defined in the domain model. 3) Each data service implements a query processor that transforms a CQL

query into the query language supported by the backing data store (e.g., HQL, Hibernate Query

Language, for caCORE Data Services). The job of a data service implementer is to provide this mapping of

database data to objects defined in the domain model.

A common type of data service in caBIG™ is a “caCORE-backed” data service. This is a data service for

which the back-end implementation is created by the caCORE SDK

(http://ncicb.nci.nih.gov/infrastructure/cacoresdk). As with all data services, a domain model which

implements an object-oriented view of the backend data source is developed using the Unified

Modeling Language (UML). The corresponding UML document (in XMI format) is the primary artifact

used as input to the caCORE SDK. The caCORE SDK produces artifacts that are then used to create a

caGrid Data Service using Introduce. caGrid offers a data service extension that implements a query

processor that translates CQL queries into hibernate select statements. Because the caCORE query

processor exists, the requirement to implement a mapping of objects in the UML domain model to the

database is already completed. Thus, the process of creating a Grid data service using caCORE SDK is

relatively simple. To retrieve large data sets, caGrid implements WS-Enumeration support. This web

services specification defines web service interfaces to support enumeration (iteration) over objects. It is

essentially a web services (distributed) version of a Java Iterator.

3.3.2. Analytical Services

Analytical Services are services that provide access to analysis routines over the Grid. The following are

requirements for analytical services:

1. Object-oriented client APIs

2. Strongly typed interfaces

Analytical services consume and produce objects, whose class definitions are well-defined. Service

developers can use the Introduce Toolkit to create Analytical Services. In Introduce, object definitions

can be imported from the caDSR, or imported from the GME, or created directly from an XMI file (e.g.,

exported from Enterprise Architect, a popular UML modeling tool).

http://ncicb.nci.nih.gov/infrastructure/cacoresdk

caGrid Technical Overview

17

3.4. Security

Security is of primary importance for all Grid participants. Security helps to protect both intellectual

property and patient information shared on the Grid. Security concerns addressed by GAARDS include

the following:

3.4.1. Grid Account Management and Federation

The Globus Toolkit supports security via Grid Security Infrastructure (GSI). GSI supports Grid identities in

the form of X.590 certificates. X.509 certificates are an implementation of PKI

(http://en.wikipedia.org/wiki/Public_key_infrastructure). The public certificate includes both the

identity of the Certificate Authority (CA) that issued the certificate and the user’s public key. When a

user presents the certificate to a Grid service, the Grid service can use the public key embedded in the

certificate to authenticate the user. The user keeps their private key secret, and uses their key to

decode/encode messages during communication.

X.509 certificates are used by both individuals (Grid users) and Grid services to identify themselves.

caGrid builds upon X.509 certificates to meet Grid requirements. For example, Grid users typically log in

from multiple locations. Requiring a user to have their private key and certificate at each location is both

cumbersome and a security risk (due to the existence of multiple copies of the private key). caGrid uses

proxy certificates to alleviate this need. A proxy certificate is a time-limited (a maximum of 12 hours)

certificate that a user can present as identification when invoking Grid services. As long as the service

trusts the certificate authority that issued the user’s proxy certificate, authentication will succeed.

Similarly, the user validates the identity of the remote Grid service by performing the same CA check in

reverse.

Using existing tools, the provisioning of Grid credentials is done manually, which is far too complicated

for users. The overall process is further complicated in the case where users wish to authenticate from

multiple locations, because a copy of the users’ private keys and certificates have to be present at every

location. Securely distributing private keys is error prone and poses a security risk. Additionally, there

are scalability and efficiency problems with vetting user identities. Organizations invest a significant

amount of resources into their existing identity management systems and already have processes in

place for vetting user identities. In such settings, it would be more efficient to leverage existing identity

management systems to provision Grid user accounts. Users would be able to use their existing

credentials to “logon” to obtain Grid credentials and access Grid services. This scenario requires a

mechanism to allow users to obtain Grid credentials using their existing organization-provided

credentials. The mechanism should also remove the complications of using and managing Grid

credentials.

http://en.wikipedia.org/wiki/Public_key_infrastructure

caGrid Technical Overview

18

Dorian is a Grid user management service that 1) hides the complexities of creating and managing Grid

credentials from users and 2) provides a mechanism for users to authenticate using their institution’s

authentication mechanism. Dorian implements a complete Grid-enabled solution, based on public key

certificates and SAML, for managing and federating user identities in a Grid environment. Grid

technologies have adopted the use of X.509 identity certificates to support user authentication. Dorian

uses SAML authentication assertions as the enabling mechanism for federating users from local

institutions to the Grid.

Figure 4. Dorian system.

Figure 4 illustrates an example usage scenario for Dorian. To obtain Grid credentials or a proxy

certificate, users authenticate with their institution using the institution’s conventional mechanism.

After successfully authenticating the user, the local institution issues a digitally signed SAML assertion,

vouching that the user has authenticated. The user then sends this SAML assertion to Dorian in

exchange for Grid credentials. Dorian will only issue Grid credentials if the SAML assertion is signed by a

Trusted Identity Provider. For example, in Figure 4, a Georgetown user wishes to invoke a Grid service

that requires Grid credentials. She supplies the application with her username and password. The

application client authenticates the user with the Georgetown Authentication Service, receiving a signed

SAML assertion which it subsequently passes to Dorian in exchange for Grid credentials. These

credentials can then be used to invoke Grid services. To facilitate smaller groups or institutions without

an existing identity provider (IdP), Dorian also has its own internal IdP. This allows users to authenticate

to Dorian directly. This scenario is also illustrated in Figure 4.

caGrid Technical Overview

19

3.4.2. Authorization: Grid Service Access Control

The Grid Grouper is a group/virtual organization management solution for the Grid supporting group-

based authorization. Grid services and applications enforce authorization policy based on membership

to groups defined and managed at the Grid level. The Grid Grouper is built on top of Grouper, which is

an Internet2 initiative focused on providing tools for group management. Grouper is a java object model

which currently supports: basic group management by distributed authorities; subgroups; composite

groups (whose membership is determined by the union, intersection, or relative complement of two

other groups); custom group types and custom attributes; trace back of indirect membership;

delegation. Applications interact with Grouper by embedding Grouper’s Java object model inside the

application. The Grid Grouper is a Grid-enabled version of Grouper. It provides a service interface to the

underlying Grouper object model. Groups are then available and manageable to applications and other

services in the Grid. The Grid Grouper provides an almost identical object model to the Grouper object

model on the Grid client side. Applications and services can use the Grid Grouper object model much

like they would use the Grouper object model to access and manage groups and enforce a group-

membership authorization policy.

In Grouper/Grid Grouper, groups are organized into namespaces called stems. Each stem can have a set

of child stems and set of child groups, with exception of the root stem which cannot have any child

groups. For example, let’s take a university compromised of many departments each of which has

Faculty, Staff, and Students. To organize the university in the Grid Grouper, a stem would be created for

each department. Each department stem would contain three groups: Faculty, Staff, and Students.

Common Security Module (CSM), developed by the caCORE SDK team, supports permissions in a way

that is very similar to standard Unix permissions (read/write access to data elements). Authorization is

determined by comparison to a specified permission on the protected structure (similar to how Unix

determines read or write access to a file by comparing the user name to the name of the user who owns

a file).

A key feature distinguishing CSM from Grid Grouper is the following. CSM centralizes permissions while

Grid Grouper is based upon decentralized permissions. That is, a CSM instance is closely tied to the

service, database, etc. for which it stores permissions. Grid Grouper is based upon group management;

therefore Grid Grouper maintains groups and members of a group, but various institutions are able to

create their own groups and manage group members themselves. Typically, one institution manages

CSM permissions for the protected resource.

caGrid Technical Overview

20

3.4.3. Grid Trust Management

Multiple certificate authorities are used on a Grid. Thus, there is a need to manage which CAs are

trusted and at what “level of assurance” (that is, how well they are trusted). In a Grid environment, the

number of certificate authorities and the number of user identities can grow to be very large. Moreover,

in a dynamic multi-institutional environment, the status of identities may be updated frequently.

Identities and credentials can be revoked, suspended, reinstated, or new identities can be created. In

addition, the list of trusted authorities may change. In such settings, certificate authorities will

frequently publish Certificate Revocation Lists (CRL), which specify “blacklisted” certificates that the

authority once issued but no longer accredits. For the security and integrity of the Grid, it is critical to

both authenticate and validate a given credential against an accurate list of trusted certificate

authorities and their corresponding CRLs. The Grid Trust Service (GTS) is a federated infrastructure

enabling the provisioning and management of a Grid trust fabric. The salient features of GTS are as

follows:

 A complete Grid-enabled federated solution for registering and managing certificate authority

certificates and CRLs, facilitating the enforcement of the most recent trust agreements.

 Definition and management of levels of assurance, such that certificate authorities may be

grouped and discovered by the level of assurance that is acceptable to the consumer.

 Due to the federated nature of GTS and its ability to create and manage arbitrary arrangements

of authorities by level of assurance, it facilitates the curation of numerous independent trust

overlays across the same physical Grid.

 Client validation, allowing a client to submit a certificate and trust requirements in exchange for

a validation decision, which allows for centralized certificate verification and validation.

3.4.4. Credential Delegation Service (CDS)

The CDS is used by a Grid user to securely and temporarily hand their credentials to a target service (or

another user) to allow the service to perform work on their behalf. A primary use case for credential

delegation is workflow. The brief explanation of how this works is as follows. A user logs on to the Grid

to retrieve their credentials. The user then wants to execute an analysis workflow which requires access

to two data services and a chain of analytical services to process the data from the two data services.

The user composes the workflow and submits it to the workflow management service of caGrid. In this

scenario, the user needs the workflow management service to have his Grid credential to perform work

on his behalf. For example, the workflow management service needs to submit a query to the two data

services and invoke the first service in the processing chain with the results of the query, and then

invoke the second service in the chain with the output from the first service, and so on. The workflow

management service will need to be handed the user’s credentials to access these services. The user

caGrid Technical Overview

21

delegates his credentials to the CDS, specifying that the workflow management service (identified by

using the service’s Grid identity) can retrieve the user’s credentials for a limited period of time. Once the

delegation is complete, the user hands a reference to the delegated credential to the workflow service.

The workflow service uses the reference to actually retrieve the user’s Grid credential and run the

analysis.

Introduce is the primary tool that leverages GAARDS to enable authentication and authorization on Grid

services. In addition, the GAARDS Security UI is used by Grid administrators to: provision accounts;

manage the trust fabric; create and manage Grid Grouper groups; and manage host certificates issued

by Dorian.

3.5. Large Data Transfer

caGrid supports transferring large amounts of data around the Grid. Currently, there are two options: 1)

GridFTP (http://www.globus.org/grid_software/data/gridftp.php) and 2) the caGrid Transfer service.

GridFTP is a high-performance FTP server extended to support authentication using X.509 certificates. It

is both robust and offers excellent performance, but its installation is difficult (e.g., there is no Windows

version of GridFTP). The Transfer service included in caGrid is much simpler to use and offers excellent

performance. Transfer supports WS-Notification, allowing interested parties to receive updates on the

status of data transfers. The Introduce Toolkit offers a caGrid Transfer extension that leverages the

Transfer service. Introduce also offers a Bulk Data Transfer (BDT) extension. This extension adds a few

service methods and a service context to allow a service developer to support large data transfer by

utilizing GridFTP or caGrid Transfer in their service implementation.

3.6. Web Integration

There are two pieces to web integration in caGrid: 1) integration between the web browser security

model and the Grid security model, and 2) integration between portlets and Grid services.

3.6.1. WebSSO

Web Single Sign-On (webSSO) is the caGrid product that supports integrating Grid sign-on into a web

browser portal. The current implementation targets the Liferay portal (http://www.liferay.com/)

platform. The webSSO design implements the single sign-on concept: 1) a user logs into the portal,

which redirects the user to an external login mechanism (JA-SIG’s Central Authentication Service, CAS),

e.g., Dorian; 2) after login, the webSSO implementation delegates credentials to the Credential

Delegation Service; and 3) each portlet can hand the credential reference to services that the portlet

http://www.globus.org/grid_software/data/gridftp.php
http://www.liferay.com/

caGrid Technical Overview

22

invokes, or alternatively use the credential retrieved from CDS to directly invoke grid services on behalf

of the user. In summary, webSSO integrates Grid sign-on with Liferay portal sign-on to provide a

seamless user experience.

3.6.2. caGrid Portal

The caGrid Portal (deployed at http://cagrid-portal.nci.nih.gov/) is a web portal that leverages many of

the caGrid components presented in this overview. It is an excellent demonstration of the capabilities of

the Grid.

As a brief walkthrough, Grid services, which have registered with the Index service and advertised

appropriate metadata, are displayed on a U.S.A. map on the front page of the portal. Filtering can be

performed both by service type (data/analytical services) and by organization offering the Grid service.

Once data services have been identified, the portal can be used to query the service, retrieving results as

XML. Note that concepts can be used when searching for compatible services (e.g., all services taking a

Gene concept as input). Federated queries can be performed across services. The caGrid Portal uses

most of the services and APIs in caGrid to provide a user interface offering: Grid service discovery;

browsing of metadata; CQL query formation and execution; and more.

3.7. caGrid Coordination Services

3.7.1. Index Service and Metadata

The Index service is the white and yellow pages of the Grid. All services participating in a Grid should,

but are not technically required to, advertise to the Index Service. Typically, there is one Index service

per Grid. However, Index services can be linked to form a federation of Index Services. For the purposes

of Advertisement and Discovery, caGrid leverages the Globus-provided Index Service. The Index Service

implements the standard WS-ServiceGroup specification. When services are added to the service group,

they specify what and how metadata should be accessed from them, and the Index Service performs this

aggregation. Clients can then query this aggregated information using standard Resource Property

operations. caGrid services are expected to maintain soft-state registration to a well-known, Index

Service instance, specifying polling of standard caGrid standard service metadata. Traversing (querying)

an Index Service is performed via XPath query. Interested parties can subscribe to changes in the Index

Service contents. An example subscription would be notification of new services advertising to the Index

service. For more information on the Index Service, see the Globus documentation

(http://www.globus.org/toolkit/docs/4.0/info/).

http://cagrid-portal.nci.nih.gov/
http://www.cagrid.org/wiki/CaGrid:Advertisement
http://www.cagrid.org/wiki/CaGrid:Discovery
http://www.globus.org/toolkit/docs/4.0/info/

caGrid Technical Overview

23

Service metadata typically advertises information about the deployed service. For example, what

organization deployed the service, where the service is located, etc. Service metadata is represented as

XML values stored as simply <key, value> pairs. Standardization and agreement upon what service

metadata will be advertised is a key step in deploying services to the Grid. The common service

metadata contains information about the service-providing cancer center, such as the point of contact

for the service and the institution’s name which is providing the service. Data Services provide an

additional “domain model” metadata, which details the domain model, including associations and

inheritance information, from which the objects being exposed by the service are drawn. These

metadata standards leverage the data models registered in caDSR and link them to the underlying

semantic concepts registered in EVS. The common service metadata for analytical services details the

objects, used as input and output of the services operations, using the same format as the data service

metadata. In this way, all services fully define the domain objects they expose by referencing the data

model registered in caDSR, and identify their underlying semantic concepts by referencing the

information in EVS. caGrid provides a series of high-level APIs and user applications for performing

lookup on service metadata which greatly facilitate the discovery process. A Grid user can query the

Grid to find services that, for example, use a Gene object as input. As an additional step, service

metadata publishes the concepts used in the service to support service discovery by concept. The

advertisement and discovery process is illustrated in Figure 2. A practical application of using service

metadata is the caGrid portal: http://cagrid-portal.nci.nih.gov/.

Related caGrid Services and APIs. Metadata is set using the Introduce toolkit. Metadata is published to

the Index Service. The Discovery API can be used to query metadata registered in the Index Service to

perform semantic search for Grid resources. The Index service is closely tied to metadata, the caDSR,

and GME. The Index Service aggregates information from other services to support comprehensive

semantic discovery on the Grid.

3.7.2. Federated Query and Workflow

caGrid provides a workflow management service that supports the execution and monitoring of

workflows expressed in the Business Process Execution Language (BPEL). WS-BPEL is the current

standard for specification of workflows in service-oriented infrastructures. Using this standard in the

middleware infrastructure facilitates easier sharing and exchange of workflows, an important feature of

collaborative environments. There are already several BPEL editors available, however, a low abstraction

level of such interface prevent their use by end users. Recent efforts have been made to integrate with

the Taverna Workflow Management System (in version 1.2 of caGrid core infrastructure) as part of a

collaboration with the Integrative Cancer Research Workspace of caBIG™. For more information about

composing and executing workflows in caGrid using Taverna, please refer to:

http://www.cagrid.org/wiki/CaGrid:How-To:Create_CaGrid_Workflow_Using_Taverna.

http://www.cagrid.org/wiki/CaGrid:Software:Release:1.0
http://www.cagrid.org/wiki/CaGrid:Discovery
http://cagrid-portal.nci.nih.gov/
http://www.cagrid.org/wiki/CaGrid:How-To:Create_CaGrid_Workflow_Using_Taverna

caGrid Technical Overview

24

The caGrid infrastructure provides support for federated querying of multiple data services to enable

distributed aggregation and joins on object classes and object associations defined in domain object

models. The current support for federated query is aimed at the basic functionality required for data

subsetting and integration. The Federated Query Processor (FQP) service provides support for joins

queries over multiple data services. The FQP service consumes a Distributed CQL (DCQL) query (an

extension of CQL with additional language constructs specifically supporting joins) and splits the query

up into standard CQL queries assigned to multiple data services. The results from each data service

query are aggregated and joined in the FQP, and the entire result set is returned to the requester.

Related caGrid Services and APIs. FQP is closely related to CQL, DCQL. FQP is more loosely related to

data services, because a federated query is executed against two or more Grid data services.

3.7.3. Global Model Exchange (GME) Service

This service supports storage and retrieval of XML schemas. These schemas define the wire

representation of abstract types (corresponding to UML class definitions) stored in the caDSR. The GME

categorizes schemas by namespace. The convention used for namespaces is the following:

gme://<Classification Scheme>.<Context>/<Scheme Version>/<Scheme Item>. “<Classification Scheme>

defines the project (or application; e.g., RProteomics, caBIO) within the <Context> (e.g., caBIG). The

version of the schema is encoded in <Scheme Version> section of the namespace. The name or id of the

schema is stored in the <Scheme Item> section.”

Related caGrid Services and APIs. The GME stores the wire definition of object types. The GME is used

by Introduce to import Grid object definitions.

3.7.4. caGrid Services for caDSR and EVS

The caGrid caDSR Grid Service provides access to information in the caDSR that is relevant to caGrid, and

has capabilities to generate caGrid standard metadata instances. Specifically, the service provides

operations to access UML-like information stored in the caDSR. It also has operations to generate Data

Service metadata for a described subset of a given project registered in caDSR. Finally, it has an

operation which augments a description of an Analytical Service, via a partially populated service

metadata instance, with the necessary UML-like and semantic information, extracted from caDSR, to

describe the service and its operations. The EVS caGrid service allows programs to utilize the caGrid

Infrastructure to access EVS information that is currently being produced by NCICB.

Related caGrid Services and APIs. The caDSR is closely related to the domain model defining Grid

objects. Annotations on the UML model are used to populate the caDSR. caDSR is also related to the

Index Service and to Introduce, since it stores the semantics of Grid types. EVS defines the concepts that

caGrid Technical Overview

25

are used to annotate domain models. By annotating a UML domain model with EVS concepts, the model

designer is explicitly linking each class and attribute to a concept to indicate the meaning of the entity.

References

[1] S. Oster, Hastings, S., Langella, S., Ervin, D., Madduri, R., Kurc, T., Siebenlist, F., Foster, I.,
Shanbhag, K., Covitz, P., Saltz, J., "caGrid 1.0: A Grid Enterprise Architecture for Cancer
Research," in Proceedings of the 2007 American Medical Informatics Association (AMIA) Annual
Symposium Chicago, IL, 2007.

[2] S. Oster, S. Langella, S. Hastings, D. Ervin, R. Madduri, J. Phillips, T. Kurc, F. Siebenlist, P. Covitz,
K. Shanbhag, I. Foster, and J. Saltz, "caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical
Research," Journal of American Medical Informatics Association (JAMIA), vol. 15, pp. 138-149,
2008.

[3] J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W. Sanchez, M. Kher, A. Manisundaram, K.
Shanbhag, and P. Covitz, "caGrid: Design and Implementation of the Core Architecture of the
Cancer Biomedical Informatics Grid," Bioinformatics, vol. 22, pp. 1910-1916, 2006.

[4] F. Berman, A. J. Hey, and G. Fox, "Grid Computing: Making The Global Infrastructure a Reality,"
John Wiley & Sons, 2003.

[5] I. Foster, "Globus Toolkit Version 4: Software for Service-Oriented Systems," Journal of
Computational Science and Technology, vol. 21, pp. 523-530, 2006.

[6] I. Foster, S. Kessellman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual
Organizations," International J. Supercomputer Applications, vol. 15, 2001.

[7] I. Foster and C. Kesselman, "The Grid: Blueprint for a New Computing Infrastructure," San
Francisco: Morgan Kaufmann, 1999.

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration," Open Grid Service Infrastructure
Working Group Technical Report, Global Grid Forum.
http://www.globus.org/alliance/publications/papers/ogsa.pdf 2002.

[9] I. Foster, C. Kesselman, and S. Tuecke, "The Anatomy of the Grid: Enabling Scalable Virtual
Organizations.," International Journal of Supercomputer Applications, vol. 15, pp. 200-222, 2001.

[10] K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling, S. Tuecke, and
W. Vambenepe, "The WS-Resource Framework version 1.0.", 2004.

[11] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire, D. Snelling, and S. Tuecke,
"Modeling and Managing State in Distributed Systems: The Role of OGSI and WSRF,"
Proceedings of IEEE, vol. 93, pp. 604-612, 2005.

[12] S. Hastings, S. Langella, S. Oster, and J. Saltz, "Distributed Data Management and Integration:
The Mobius Project," Proceedings of the Global Grid Forum 11 (GGF11) Semantic Grid
Applications Workshop, Honolulu, Hawaii, USA., pp. 20-38, 2004.

[13] P. A. Covitz, F. Hartel, C. Schaefer, S. Coronado, G. Fragoso, H. Sahni, S. Gustafson, and K. H.
Buetow, "caCORE: A Common Infrastructure for Cancer Informatics," Bioinformatics, vol. 19, pp.
2404-2412, 2003.

[14] J. Phillips, R. Chilukuri, G. Fragoso, D. Warzel, and P. A. Covitz, "The caCORE Software
Development Kit: Streamlining construction of interoperable biomedical information services.,"
BMC Medical Informatics and Decision Making, vol. 6, 2006.

http://www.globus.org/alliance/publications/papers/ogsa.pdf

caGrid Technical Overview

26

[15] S. Langella, Oster, S., Hastings, S., Siebenlist, F., Phillips, J., Ervin, D., Permar, J., Kurc, T., Saltz, J.,
"The Cancer Biomedical Informatics Grid (caBIG™) Security Infrastructure," in Proceedings of the
2007 American Medical Informatics Association (AMIA) Annual Symposium Chicago, IL, 2007.

[16] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Dorian: Grid Service
Infrastructure for Identity Management and Federation," in The 19th IEEE Symposium on
Computer-Based Medical Systems, Special Track: Grids for Biomedical Informatics, Salt Lake City,
Utah., 2006.

[17] S. Langella, S. Oster, S. Hastings, F. Siebenlist, T. Kurc, and J. Saltz, "Enabling the Provisioning and
Management of a Federated Grid Trust Fabric," 6th Annual PKI R&D Workshop, Gaithersburg,
MD, April 2007.

[18] S. Langella, S. Hastings, S. Oster, T. Pan, A. Sharma, J. Permar, D. Ervin, B. Cambazoglu, T. Kurc,
and J. Saltz, "Sharing Data and Analytical Resources Securely in a Biomedical Research Grid
Environment " Journal of the American Medical Informatics Association vol. 15, pp. 363-373,
2008.

[19] S. Hastings, S. Oster, S. Langella, D. Ervin, T. Kurc, and J. Saltz, "Introduce: An Open Source
Toolkit for Rapid Development of Strongly Typed Grid Services," Journal of Grid Computing, vol.
5, pp. 407-427, 2007.

